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Of particular importance to the development of models for isolated vortex ring
dynamics in a real fluid is knowledge of ambient fluid entrainment by the ring. This
time-dependent process dictates changes in the volume of fluid that must share impulse
delivered by the vortex ring generator. Therefore fluid entrainment is also of immediate
significance to the unsteady forces that arise due to the presence of vortex rings in
starting flows. Applications ranging from industrial and transportation, to animal
locomotion and cardiac flows, are currently being investigated to understand the
dynamical role of the observed vortex ring structures. Despite this growing interest,
fully empirical measurements of fluid entrainment by isolated vortex rings have
remained elusive. The primary difficulties arise in defining the unsteady boundary of
the ring, as well as an inability to maintain the vortex ring in the test section sufficiently
long to facilitate measurements. We present a new technique for entrainment mea-
surement that utilizes a coaxial counter-flow to retard translation of vortex rings gene-
rated from a piston—cylinder apparatus, so that their growth due to fluid entrainment
can be observed. Instantancous streamlines of the flow are used to determine
the unsteady vortex ring boundary and compute ambient fluid entrainment.
Measurements indicate that the entrainment process does not promote self-similar
vortex ring growth, but instead consists of a rapid convection-based entrainment
phase during ring formation, followed by a slower diffusive mechanism that entrains
ambient fluid into the isolated vortex ring. Entrained fluid typically constitutes 30%
to 40% of the total volume of fluid carried with the vortex ring. Various counter-flow
protocols were used to substantially manipulate the diffusive entrainment process,
producing rings with entrained fluid fractions up to 65%. Measurements of vortex
ring growth rate and vorticity distribution during diffusive entrainment are used to
explain those observed effects, and a model is developed to relate the governing
parameters of isolated vortex ring evolution. Measurement results are compared with
previous studies of the process, and implications for the dynamics of starting flows
are suggested.

1. Introduction

The earliest theoretical treatments of isolated vortex ring kinematics and dynamics
predate quantitative experimental observations of the same phenomena by a half-
century, due largely to the lack of available techniques to measure the salient fluid
mechanics. Although ideal vortex ring models such as those of Saffman (1970),
Fraenkel (1972), and Norbury (1973) have remained popular for describing empirical
vortex ring dynamics (e.g. Gharib, Rambod & Shariff 1998; Linden & Turner 2001),
the past few decades of research have witnessed several efforts to reconcile the
predictions of analytical models with more recent observations made in the laboratory.
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The most common method for generating vortex rings in the laboratory is the
piston—cylinder arrangement. In this configuration, a cylindrical piston with outer
diameter flush to the inner diameter of a hollow cylinder is translated axially from
rest. A fluid efflux emerges after separating from the sharp-edged lip at the open end
of the hollow cylinder. The resulting cylindrical vortex sheet induces its own roll-up
into a ring which propagates axially away from the exit plane of the generator.

Vortex rings generated in the laboratory tend to depart from the thin-ring limit
typically studied in theory. Nevertheless the literature contains notable examples of
agreement between classical theoretical predictions and empirical observations (e.g.
Widnall & Sullivan 1973; Liess & Didden 1976).

Maxworthy (1972) credits Reynolds (1876) with the first qualitatively correct
observations of vortex ring propagation subsequent to the formation process.
Specifically, Reynolds describes the growth of the ring in time due to entrainment of
fluid surrounding the ring. Assuming the ring itself possesses a nominally constant
impulse, the ring velocity decreases as a consequence of shared momentum with an
increasing mass of fluid.

A physical mechanism for ambient fluid entrainment consisting of repeated cycles
of viscous diffusion and circulatory transport is proposed by Maxworthy (1972).
Vorticity from the core of the isolated vortex ring diffuses to its radial extent, where
it interacts with oncoming irrotational fluid (in the reference frame of the vortex
ring). A process of viscous dissipation reduces the total pressure of the fluid adjacent
to the ring, to the point that it cannot pass over the ring and is instead entrained
by the circulatory motion of the ring. A portion of the diffused vorticity will return
to the ring in this entrainment process, while the remainder will form a small wake
behind the ring. Formation of the wake is facilitated by free-stream fluid that still
possesses sufficient total pressure after the dissipation process to convect the vorticity
downstream.

Using dimensional analysis and physical arguments regarding the structure of the
dissipation region, Maxworthy (1972) derives the rate of fluid entrainment as

d2g
dr

where §2p is the volume of the vortex bubble (i.e. the volume of fluid moving with
the ring), v is the kinematic viscosity, a is a characteristic dimension of the ring,
and U, is the characteristic velocity of the free-stream fluid relative to the ring. The
quantity C is a dimensionless lumped parameter that incorporates the shape and size
of the dissipation region, assuming self-similar vortex bubble growth. Equation (1.1)
is used in concert with an assumption of constant vortex ring impulse to predict a
—2/3 power-law decay of ring circulation in time, and to hypothesize the existence of
a small wake of vorticity behind the ring.

Despite this progress, Maxworthy (1972) does not attempt to estimate the magnitude
of the lumped parameter and therefore cannot attain a quantitative result for the
contribution of entrainment to the dynamics of vortex rings. Maxworthy (1972) also
lacks a method to empirically verify the predictions of ring circulation decay and
wake formation. The validity of the assumption of constant ring impulse remains
unknown, although Maxworthy (1972) limits it to high Reynolds numbers and small
time scales.

Baird, Wairegi & Loo (1977) briefly address the role of fluid entrainment
quantitatively, using the classical slug model (cf. Shariff & Leonard, 1992) to
approximate the fraction of vortex ring fluid that originated in the free stream. They

= Cv'2aPUls, (1.1)
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arrive at the result that 1/4 of the fluid in the vortex ring is supplied by entrainment.
The validity of the calculation is limited to small piston stroke length-to-diameter
ratios — less than 2L /D by their own assertion — so that it can be assumed that all
of the impulse delivered from the vortex generator is transferred to the vortex ring.
Confirmation of the prediction is not reported in those experiments or in subsequent
work.

Miiller & Didden (1980) visualize the growth of vortex rings using a dye marker
in the flow, and estimate the entrained fluid fraction of the vortex ring to be
approximately 40%. As this was an estimated average value, no conclusions regarding
the temporal dependence of the process can be made.

Transient measurements of fluid entrainment in vortex rings are especially
cumbersome due to difficulty in observing and defining the boundary of the vortex
ring as it propagates in time. Maxworthy (1972) notes that the physical extent of
the ring may not be accurately determined from common dye visualizations, due to
marked differences in the diffusion coefficients of the vorticity and the dye marker
(e.g. Schmidt number ~ 10> for Rhodamine WT). As such, he notes the propensity
to misinterpret qualitative visualizations of the entrainment process (e.g. Prandtl &
Tietjens 1934). Fully quantitative measurements of unsteady ambient fluid entrainment
by isolated vortex rings have not yet been accomplished.

The task of measuring fluid entrainment is simplified if the ring can be maintained
within the measurement window for longer periods of time. In the absence of external
intervention, the ring will propagate away from the vortex generator under its self-
induced velocity. The time allotted for an entrainment measurement will then be
dictated by the length of the viewing window and the ring speed.

A set of experiments was conducted to demonstrate use of an axisymmetric counter-
flow to maintain the vortex ring within the measurement window for longer periods of
time, with the goal of observing ring growth due to fluid entrainment. Instantaneous
streamlines of the flow in the reference frame of the vortex ring were measured
using quantitative flow visualization techniques. These data enabled definition of the
unsteady boundary of the vortex ring for transient entrainment calculations.

Although convective transport dominates the fluid entrainment process during
vortex ring formation, the focus of this paper is on the diffusive mechanism of ambient
fluid entrainment that is observed in isolated vortex rings. Various counter-flow
protocols were implemented to manipulate this entrainment process and to elucidate
the governing physical principles. Based on these results, a model is developed to
quantitatively relate the salient parameters of isolated vortex ring evolution. The
experimental data obtained here are compared and contrasted with the work of
Maxworthy (1972) and the estimates of Baird et al. (1977) and Miiller & Didden
(1980). Finally, implications for the dynamics of starting flows are suggested.

2. Measurement techniques
2.1. Apparatus

Experiments were conducted in a 60cm H x 40cm W X 110cm L water tank using an
impulsively started piston—cylinder arrangement similar to that described by Gharib
et al. (1998). A basic schematic of the apparatus is shown in figure 1 (adapted from
Krueger, Dabiri & Gharib 2003). The piston is driven by an external water supply
that is maintained at constant total head (Ap = 8.2 kPa) and delivered by a computer-
controlled solenoid valve (ASCO Valve, Inc.), to provide a repeatable piston velocity
profile. Fluid ejected from the open end of the sharp-edged hollow cylinder (inner
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FIGURE 1. Schematic of apparatus for piston—cylinder experiments
(adapted from Krueger et al. 2003).

diameter = 2.54 cm) rolls into a vortex ring and propagates through the surrounding
fluid.

A modification to the traditional piston—cylinder arrangement was made by
enclosing the primary cylinder in a 12cm diameter coaxial shroud. An external
pump (Leeson Electronic Corp.) connected to the shroud drives flow around the
primary cylinder in either a co-flowing (co) or counter-flowing (cn) configuration. Flow
conditioning screens ensure nominally uniform flow around the primary cylinder. The
shroud flow is also regulated by a computer-controlled solenoid valve. Tests verified
that the presence of the shroud did not affect the observable vortex dynamics.

Ultrasonic flow probes (Transonic Systems, Inc.) measure the flow rates in the
cylinder and shroud. All flow data are recorded to a computer hard disk via a
LabVIEW (National Instruments) program. The starting jet flows are visualized
quantitatively using digital particle image velocimetry (DPIV, cf. Willert & Gharib
1991). The water tank is seeded with 13-micron (nominally) glass spheres that reflect
light at the incident wavelength. Illumination is provided by a double-pulsed Nd:YAG
laser (New Wave Research) that delivers 30 mJ of energy per pulse at 532nm. The
laser beam is collimated by a cylindrical lens before entering the test section, which
measures approximately 12 cm radially and 20 cm axially downstream of the vortex
generator exit plane.

Mie scattering from the seeded water is captured by a 1024 x 1024 pixel black-
and-white CCD digital camera (Uniq Vision, Inc.) at 30Hz. The pixel resolution
corresponds to a physical test section resolution of approximately 0.19 x 0.19 mm.
This is sufficient to resolve the vortex ring core vorticity distribution. Image data are
transferred in real time by a progressive scan protocol to a frame grabber (Coreco
Imaging) linked to a PC.

Images are paired according to the method described by Willert & Gharib (1991).
In the present case, each pair of images represents a separation of 18 ms between laser
pulses. This timing results in an average particle shift of 4—7 pixels between images for
the nominal piston speed of 5.5 cms~!. Interrogation is accomplished using a window
size of 32 x 32 pixels with a 50% overlap. Calculations of velocity and vorticity
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Notation  Vortex generator L/D Counter-flow speed Initiation delay

LD2-CF0 2 0 N/A
LD2-CF05-12 2 0.5U, 12 L/D
LD2-CFE 2 Uslcro 0
LD4-CF0 4 0 N/A
LD4-CF05-2 4 0.5U, 2L/D
LD4-CF05-6 4 0.5U, 6 L/D
LD4-CFE 4 Uylcro 0

TaBLE 1. Counter-flow protocols.

fields are completed using an in-house code on an Intel 2-GHz processor. Velocity
and vorticity measurements possess an uncertainty of 1% and 3%, respectively. A
MATLAB (The Mathworks, Inc.) algorithm was created to rapidly visualize the
instantaneous streamlines of the flow, based on the measured velocity field.

The flow Reynolds number is 1400 based on the piston speed and cylinder exit
diameter, and varies between 2000 and 4000 based on the ring circulation (i.e. loop
integral of measured velocity along a path enclosing the vortex).

2.2. Counter-flow protocols

A variety of counter-flow protocols were implemented to manipulate the dynamics
of vortex rings generated by the piston—cylinder apparatus. The primary goal of
these protocols was to maintain the vortex rings in the test section for sufficient time
to permit transient fluid entrainment measurements after initial ring formation. In
addition, several of the protocols were used to affect the vorticity distribution of
the rings via the dynamics of the shear layer efflux from the vortex generator. The
strength and convective velocity of the shear layer were affected by the counter-flow,
increasing the former and decreasing the latter. These effects resulted in a modified
vorticity distribution in the vortex ring. The dynamics of the entrainment process
were significantly altered by changing the vorticity distribution in some cases, as will
be shown in § 3.

In the absence of counter-flow, vortex ring pinch-off (i.e. dynamic separation from
the vortex generator flow source, cf. Gharib et al. 1998) was observed to occur at a
formation number F = 3.6, where

— U_pt|pinch-off _ L‘pinch-off (2 1)
D D )

In (2.1), U, is the running average of the piston velocity, L is the total piston
stroke length (i.e. at the end of fluid ejection), D is the cylinder exit diameter, and ¢
is time measured relative to the start of piston motion. Hence, counter-flow protocols
initiated prior to L/D = 3.6 affected the vortex ring vorticity distribution, whereas
those initiated subsequent to pinch-off could not.

The magnitude of the counter-flow was assigned one of two values. In the first case
it was matched to the measured vortex ring propagation speed U, in the absence of
counter-flow. This enabled vortex rings to be maintained at a single axial location
for longer periods of time. Alternatively, the counter-flow was set to one-half of
the nominal piston speed. This is the theoretical vortex ring propagation speed
predicted by the slug model (Baird et al. 1977). Table 1 lists the set of counter-flow
protocols utilized in these experiments, along with an abbreviated notation to be
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FIGURE 2. Measured vortex ring trajectory for each counter-flow protocol.
(a) L/D =2;(b) L/D =4.

used in the following sections. The basic format of the notation is [vortex generator
L/D]-[counter-flow speed]-[initiation delay].

3. Results
3.1. Vortex ring trajectories

Figure 2 plots the trajectories of vortex rings generated using the protocols in table 1,
as measured from the location of peak vorticity in the ring. In the absence of counter-
flow, cases LD2-CF0 and LD4-CF0 exhibit the expected ring propagation axially
away from the vortex generator under self-induced velocity. The additional shear
layer strength and concomitant circulation increase generated in cases LD2-CFE and
LD4-CFE (ie. due to counter-flow initiation prior to vortex ring pinch-off) enables
these vortex rings to emerge from the vortex generator, despite the presence of counter-
flow equal to U,|cro. The increased circulation in the LD4-CFE case is greater than
that in the LD4-CF05-2 protocol, leading to the observed larger axial translation
away from the vortex generator. Vortex rings generated under the protocols with
larger counter-flow initiation delays (i.e. LD2-CF05-12 and LD4-CF05-6) exhibited
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FIGURE 3. Instantaneous streamlines for protocol LD2-CF0 at time T=5.34s.
(a) Laboratory frame; (b) vortex ring frame. Flow is from left to right.

abrupt changes in vortex ring trajectory due to the sudden application of a relatively
large counter-flow.

In each of the counter-flow protocols, a trend can be observed at later times in
which the counter-flow dominates the self-induced velocity of the rings, convecting the
vortex ring structure back toward the vortex generator. This effect can be attributed to
the increasing mass of fluid in the vortex bubble as the entrainment process proceeds,
slowing and ultimately reversing the forward progress of the bubble.

The darkened portion of each vortex ring trajectory in figure 2 will be the focus
of the following investigations. In these regions the vortex ring can be considered
isolated, and the transients associated with the formation process (e.g. fluid convection
from the vortex generator) have ceased.

3.2. Fluid entrainment and vorticity distribution

Measurements of transient fluid entrainment and vorticity distribution in isolated
vortex rings were made using DPIV. The primary difficulty associated with such
measurements — definition of the vortex boundaries — was overcome by making use
of instantaneous streamlines of the flow determined from DPIV velocity field results
and a post-processing algorithm created for this purpose.

An example of the instantaneous streamlines measured from a steadily translating
vortex ring (protocol LD2-CF0, time T = 5.34 s) is shown in figure 3(a), in a
laboratory reference frame. The physical extent of the vortex in not evident until the
measurement is taken in a frame moving with the ring. This was accomplished by
superimposing a free-stream axial flow with magnitude equal to the measured ring
axial velocity. Figure 3(b) shows the same vortex ring in its moving frame. Its physical
extent is well-defined.
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The ring velocity was measured from the axial location of peak vorticity in the cores.
A more correct measurement should use an ad hoc vorticity centroid location, such as
that suggested by Saffman (1970). However, the difference between Saffman’s vorticity
centroid location and the vorticity peak appears to remain within experimental error.

The volume of the vortex bubble £23(¢) was computed using an ellipsoidal fit based
on the measured locations of the front and rear stagnation points as well as the radial
extent of the ring. In the event that the rear stagnation point was obscured (e.g. when
in close proximity to the vortex generator), this point was defined as the mirror image
of the front stagnation point relative to a plane containing the vortex core centres
and oriented normal to the axial direction.

Given the measured volume of the vortex bubble §25(¢) and the fluid volume £2;(¢)
supplied by the vortex generator,

2,(1) = “TDz /Ot U,(7)dr, (3.1)

the magnitude of entrainment was quantified by the entrained fluid fraction n(z),
where

2u() = 2,0) _ | _ 240
2s() 2s0)

Measurements possess an uncertainty of 8% to 10%. The primary source of error
lies in the measured instantaneous vortex ring velocity that is used to visualize the
streamlines in the moving ring frame. This velocity measurement has a first-order
effect on the observed location of the ring stagnation points when the free-stream
velocity is superimposed.

Figure 4 plots the entrained fluid fraction n(z) measured during the darkened
portion of each vortex ring trajectory in figure 2. The trends are generally monotonic
in favour of increasing bubble volume. Oscillations in the measured data for protocol
LD4-CF05-2 were suspected to be due to rotation of its non-circular vortex cores,
which tended to distort the measurement of the radial vortex ring extent. This was
confirmed by examination of the vorticity contours, which indicated that the frequency
of measurement oscillation exactly matched the frequency of the non-circular core
rotation.

It is immediately evident that an extrapolation of the entrainment data to time 7' =
0 will not lead to the expected condition of zero entrainment fraction at the start of
vortex ring formation. This is because convective fluid entrainment is the dominant
mechanism at early times, as the generated vortex sheet involutes and captures a
substantial portion of ambient fluid near the exit plane of the vortex generator. This
captured fluid persists in the vortex bubble indefinitely. The data collected in figure 4
only capture the integrated effect of this early entrainment phase, essentially as
an initial condition for the diffusive fluid entrainment of the isolated vortex rings
studied here. The dynamics of the convective entrainment process during vortex ring
formation are beyond the scope of this paper, although it is interesting to observe
in passing that the counter-flow appears to also have a measurable effect on early
convective entrainment at the stroke ratio L/D = 4.

In the absence of counter-flow, the magnitude of fluid entrainment at both piston
stroke-to-diameter ratios L/D = 2 and L/D = 4 was found to lie between 30% and
40% of the bubble volume. These values are higher than those predicted based on
a slug model analysis similar to that of Baird et al. (1977). The discrepancy arises
due to overestimation of the vortex ring velocity by a boundary-layer-corrected slug

n(t) = (3.2)
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FIGURE 4. Measured entrainment fraction 7(z) for each counter-flow protocol.
(a) L/D=2;(b) L/D = 4.

model (e.g. Shusser et al. 2002; Dabiri & Gharib 2004a), leading to underestimation
of the bubble mass that must share the conserved impulse. The experimental result
by Miiller & Didden (1980) of a 40% entrained fluid fraction lies within the range
observed here. A time-dependent trend in the fluid entrainment is not reported by
Baird et al. (1977) or Miiller & Didden (1980), limiting any further comparison.

Imposition of a counter-flow was demonstrated to substantially affect fluid
entrainment for several of the protocols. An entrainment fraction of nearly 65% was
observed for the LD2-CFE case, nearly 200% of the entrainment level for vortex rings
generated in the absence of counter-flow. Examination of the vorticity distribution
generated by each of the protocols provides the insight necessary to explain the
mechanism whereby the process of fluid entrainment is being manipulated. This will
be demonstrated in the following development.

An important parameter in the entrainment mechanism described by Maxworthy
(1972) is the spatial distribution of vorticity relative to the translating vortex bubble.
It is vorticity that has diffused outside the bubble that will reduce the total pressure of
ambient fluid near the ring (i.e. by viscous dissipation) to an extent that entrainment
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FIGURE 5. Instantaneous streamlines and vorticity patches for protocol LD2-CFO0.
(a) T=1.67s; (b) T = 3.54s; (c) T = 5.34s. Minimum vorticity level is 1571

can proceed. This relationship can be visualized quantitatively, by superimposing
the measured vorticity field on instantaneous streamlines of the flow in the vortex
reference frame. Figure 5 plots these data for the protocol LD2-CF0 at times T =
1.67s, 3.54s, and 5.34s. The grey patches represent regions of vorticity magnitude
above 10% of peak vorticity (10 s7!) in the cores.

Consistent with the model of Maxworthy (1972), the vorticity diffuses beyond the
radial extent of the vortex bubble where it will interact with ambient fluid. The
thickness of this interacting layer remains steady as the vortex bubble translates, as
indicated by the plots at three distinct times during the ring evolution. A similar
structure is observed in vortex rings generated by the other protocols. The various
counter-flow protocols can be distinguished by observing the evolution of the vorticity
profiles in time. Figure 6 shows this evolution for cases LD2-CF0 and LD2-CFE. The
vorticity profile evolution for vortex rings generated in the absence of counter-flow
(ie. LD2-CF0) exhibits broadening of an initially Gaussian vorticity distribution.
In the process, the location of peak vorticity remains essentially stationary, with a
small movement toward the vortex ring axis of symmetry. Thus, relative to the growing
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vortex bubble, the location of peak vorticity is moving away from the ambient
fluid on the opposite side of the bounding streamsurface. By contrast, as the vortex
rings generated by protocol LD2-CFE grow, the peak vorticity does not decay as
rapidly and its location moves radially away from the vortex ring axis of symmetry
(figure 6b). These effects should enhance the strength of vorticity in the dissipation
region, amplifying ambient fluid entrainment. The measurements shown in figure 4
confirm this prediction.

If this physical mechanism is consistent, one can also anticipate that thicker
vortex rings — with broader vorticity distribution reaching closer to the bounding
streamsurface — will also have enhanced fluid entrainment, relative to a vortex ring
with similar aspect ratio but sharper vorticity decay in the radial direction. This,
too, is confirmed in the measurements, as indicated by comparison of the vorticity
profiles of protocols LD4-CF0 and LD4-CFE in figure 6(c) and their corresponding
entrainment measurements in figure 4.

An additional dynamical process becomes important to the fluid entrainment
mechanism for vortex rings generated at piston stroke-to-diameter ratios L/D greater
than the formation number F. Under these conditions, it has been demonstrated in
experiments (Gharib et al. 1998), models (Kelvin 1875; Benjamin 1976; Mohseni &
Gharib 1998; Mohseni 2001), and numerical simulations (Mohseni, Ran & Colonius
2001) that the vortex ring possesses maximum energy with respect to impulse-
preserving rearrangements of the vorticity. The vortex ring cannot accept additional
fluid from the vortex generator without violating this energy maximization, leading
to the observed pinch-off. Shusser & Gharib (2000) provide an equivalent statement
of this maximization principle, and predict that pinch-off occurs when the velocity
of fluid from the vortex generator falls below that of the translating ring. Since the
velocity of the ambient fluid is less than that of the vortex generator fluid trailing
behind the ring, ambient fluid entrainment must also prohibited after vortex ring
pinch-off.

This absence of fluid entrainment is observed for protocols LD4-CF0 and LD4-
CF05-6, in which the stroke length-to-diameter ratio of the vortex generator (L/D = 4)
is greater than the formation number (F =3.6). The entrained fluid fraction is
unchanged from its value at the end of the convective entrainment process (i.e.
at vortex ring pinch-off). Interestingly, we do observe substantial fluid entrainment
for protocols LD4-CF05-2 and LD4-CFE well above the formation number F, despite
the fact that these rings were generated at the same L/D as the non-entraining vortex
rings. The apparent contradiction is resolved by the observation that the vortex rings
generated by protocols LD4-CF05-2 and LD4-CFE do not experience pinch-off. The
effect of counter-flow on the shear layer dynamics is to delay vortex ring pinch-off
(Dabiri & Gharib 2004b). Only a minor delay in pinch-off was necessary in the present
case, since the stroke length-to-diameter ratio of the vortex generator is only slightly
greater than the formation number. However, the delay was sufficient to prevent
pinch-off and facilitate fluid entrainment. By contrast, the counter-flow implemented
in protocol LD4-CF05-6 was initiated after the formation number, and therefore
could not affect the shear layer dynamics or the pinch-off process.

4. Comparison with Maxworthy (1972)

The work of Maxworthy (1972) provides the most complete analysis of the diffusive
entrainment process in isolated vortex rings that exists in the literature. Due to
limitations in the experimental techniques employed therein, many of the model
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FIGURE 7. Measured vortex ring velocity for each counter-flow protocol.
(a) L/D=2;(b) L/D = 4.

predictions could not be validated. Experiments conducted here are sufficient to revisit
those analyses and make detailed comparisons. The most important predictions made
by Maxworthy (1972) are a —1 power-law decay in the vortex ring propagation
velocity U,, a —2/3 power-law decay in vortex ring circulation I”, and the formation
of a small wake behind the vortex ring. It is prudent to note that the equivalent piston
stroke-to-diameter ratio L/D in the experiments of Maxworthy (1972) is not known.
However, given that pinch-off is not observed in that study and the Reynolds numbers
are in the laminar regime, a comparison with the current results is warranted.

As mentioned in the previous section, the vortex ring velocity in the laboratory
frame of reference was measured in these experiments based on the location of peak
vorticity in the cores. By subtracting the counter-flow velocity from this measured
value, the ring velocity relative to the fluid U, was determined for each of the counter-
flow protocols. The results are plotted in figure 7. It is evident that the decay rate of
the vortex ring velocity in each case is much slower than the —1 power-law observed
by Maxworthy (1972). For the majority of protocols, the power-law exponent is closer
to —1/3. Exceptions to this trend occur for the LD2-CF0 protocol, in which the ring
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decays with a further reduced exponent of approximately —1/9; and the late-time
motion of rings from protocols LD4-CF05-2 and LD4-CF05-6, which decay at an
increasing rate near the end of the measurements.

Although the present measurements are limited to a single decade of time (10°
to 10's), this is approximately the same data range reported by Maxworthy (1972).
Therefore we can reasonably conclude that the rapid decay in vortex ring velocity
reported there is not observed here.

The most likely source of the discrepancy in measured vortex ring velocity lies in the
initial conditions of vortex ring generation. Whereas the current experiments utilize a
piston—cylinder apparatus to generate the rings, Maxworthy (1972) uses a sharp-edged
orifice plate. This can present two prominent effects. First, the magnitude of convective
fluid entrainment during vortex ring formation can be substantially altered, leading
to different initial conditions for the subsequent diffusive entrainment process than
those in the present study. Second, the entrainment of opposite-sign vorticity on the
downstream-facing wall of the orifice plate will comprise a larger component than in
the present experiments. Maxworthy (1972) predicts the production and convection
of this opposite-sign vorticity to affect the dynamics of the evolving vortex rings. It is
possible that the translational velocity of the rings is one of the affected parameters,
e.g. by vorticity cancellation in the ring, which will reduce its self-induced velocity.
The effect of opposite-sign vorticity is further amplified for vortex rings generated at
small L/D, in which the relative fraction of opposite-sign vorticity increases.

To predict a temporal trend in the vortex bubble circulation, Maxworthy (1972)
uses a model that assumes the vortex ring possesses a nominally constant impulse.
The model is admittedly limited to large Reynolds numbers and small time scales,
so that impulse loss to the wake behind the ring can be neglected. Nevertheless, a
—2/3 power-law decay rate in the ring circulation is predicted. Figure 8 plots the
temporal trends in ring circulation for the protocols tested in these experiments.
The decay rates are much slower than predicted by Maxworthy (1972). Specifically,
the protocols using L/D = 2 decay with a power-law exponent an order of magnitude
smaller than that observed by Maxworthy (1972). The circulation of thicker vortex
rings at L/D = 4 decays slightly faster, but still at a rate much smaller than the —2/3
power-law.

It is likely that this discrepancy is due to the fact that the present experiments
satisfy neither the requirement of large Reynolds number, nor the assumption of
short elapsed time. Hence it is also incorrect to assume a constant impulse for the
vortex ring.

Using the analytical method of Maxworthy (1972), one can attempt to estimate the
decay rate of the ring impulse based on the measured ring velocity and circulation.
The impulse I is related to the ring circulation I and the characteristic dimension of
the vortex bubble £2;° by

1=Cre), (4.1)

where C, is a dimensionless constant dependent on the bubble shape. The vortex ring
Ve}%city U, is related to the ring circulation I" and the characteristic bubble dimension
25" by

(4.2)
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FIGURE 8. Measured vortex ring circulation for each counter-flow protocol. (a) L/D = 2;

s

(b) L/D = 4. Note that the data symbol convention in (b) has been altered to avoid data point
overlap.

where C, is also a dimensionless constant dependent on the bubble shape. Therefore
the ring impulse goes as

I~ (4.3)

Substituting the measured —1/3 power-law decay for the vortex ring velocity and
—1/10 power-law decay for the vortex ring circulation (conservatively), the ring
impulse is actually predicted to increase with an 11/30 power-law in time! This
physically incorrect result of increasing impulse also holds for each of the protocols
when the individual velocity and circulation decay rates are input to (4.3) in place of
the nominal values above. Therefore we must re-examine the model of Maxworthy
(1972). Specifically, the following section will show that that the non-physical result
arises due to the assumption of self-similar vortex bubble growth that is implicit
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X (cm)

FIGURE 9. Instantaneous streamlines and vorticity patches for protocol LD2-CF0 at time
T = 5.74s. Minimum vorticity level is 0.3s7!.

in the use of constant parameters (e.g. C; and C) to relate the characteristic ring
dimension to the actual bubble shape.

Before concluding this section, it is useful to explore the final important prediction
of Maxworthy (1972), namely the formation of a wake behind the vortex ring. Figure 9
plots the vorticity patches and instantaneous streamlines for a vortex ring formed
using protocol LD2-CF0 at time T = 5.74s. The minimum vorticity level has been
reduced to 3% of the peak vorticity in the vortex core in order to visualize regions of
low vorticity. As this represents the upper-bound on the measurement error, the data
must be interpreted with caution, especially in regions of the flow with large velocity
gradients. Nevertheless, the measurement does appear to capture the presence of
symmetric vorticity patches behind the vortex ring, in accordance with the prediction
of Maxworthy (1972). The existence of this wake structure emphasizes the fact that the
increase in vortex ring impulse predicted by the model above must be incorrect. Given
the consistency of the observed wake with the aforementioned physical mechanism
for diffusive fluid entrainment proposed by Maxworthy (1972), it will henceforth be
assumed correct, and will be used in the following section to derive an improved
quantitative model for the process.

5. A quantitative model for diffusive fluid entrainment

The physical process of diffusive entrainment is assumed to be essentially that
of Maxworthy (1972), as described in the Introduction. Our model will make the
corollary assumption that the fraction of ambient fluid flux into the dissipation
region that is entrained by the vortex ring is proportional to the fraction of energy
lost by the ambient fluid in the same region, i.e.

dQg/dr  dE,/de

~ 1
d2p/dt dE;/dt’ (3.1)

where d§2p/dz is the flux of entrained fluid from the dissipation region into the vortex
ring, d2p/dr is the total flux of fluid into the dissipation region, dE; /d¢ is the rate
of ambient fluid energy loss due to viscous dissipation in the dissipation region, and
dE;/drt is the rate of ambient fluid energy entering the dissipation region.

The rate of energy loss dE;/dt (per unit mass) is computed using the two-
dimensional incompressible dissipation function @ in the energy equation (i.e. the
scalar product of the momentum equation with the velocity vector u; see Batchelor
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dE; du\ av\> 1/0v  ou\’
dt _¢_2v[<3x> +<8r> +2<8x+8r)} (52)
where u and v are the velocity components in the axial x and radial r directions,
respectively. The magnitude of the dissipation function will be proportional to the
kinematic viscosity v, and to a characteristic speed U, and length scale .Qll;/ ? over
which changes in fluid velocity occur, i.e.
dEL _ 5 SwU2R,". (5.3)
dr
In (5.3), S; is a dimensionless shape factor that is dependent on time and other
parameters to be delineated shortly. This is distinct from the assumption of constant
shape factors used by Maxworthy (1972).
The rate of ambient fluid energy entering the dissipation region (per unit mass) is
directly proportional to the square of the fluid velocity and inversely proportional to
the time scale over which the process occurs:

1967):

W = UUZTdil. (54)

This characteristic dissipation time scale 7, can be replaced by the characteristic
velocity and bubble dimension as T, = S, llg/ 3UU_ ! where S, is a second dimensionless
shape factor. With this substitution, (5.4) becomes

dE,

L =5Uie;"". 5.5
dr 2Uyép ( )
Finally, the volume flux of fluid into the dissipation region is
ds
To - 0T 220U, = S s PRl Ul (56)

where the radial extent of the dissipation region is proportional to (vTy)Y2.
Substituting (5.3), (5.5), and (5.6) into (5.1) gives an expression for the vortex bubble
growth as a function of the characteristic ring velocity and dimension, and the shape
factors:
ds2p
dr

Henceforth, we will consider a dimensionless lumped shape factor S = §; S, 25 and
unit viscosity. As mentioned above, the shape factor is no longer assumed constant,
and is instead dependent on time and the set of parameters that will affect the
shape and size of the ring from the start of diffusive entrainment: the instantaneous
circulation of the ring I'(z); the duration of vortex generator fluid ejection 7,; the
rate of change of the entrained fluid fraction dn/df; and the vortex generator exit
diameter D. Given this functional dependence, the shape factor can be expressed in
terms of a single dimensionless parameter,

= 5,8, Ps3PUs R0 (5.7)

dn
dr

where § is a dimensionless constant. Substituting for S in (5.7) using this result and
rearranging with the use of (3.2), we obtain

QB(t) — Qg + §F(Z)6/11D_lz/llTe6/119§/11Uv(t)_S/lltG/ll. (59)

S=S—IrDp T, (5.8)
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FIGURE 10. Comparison of predicted vortex bubble growth to experimental measurements.
Non-entraining protocols (i.e. LD4-CF0 and LD4-CF05-6) are excluded.

Note that (5.9) is dimensionally correct with § = §%/1! as a dimensionless constant,
when the unit viscosity from (5.7) is included. The time variable ¢ in (5.9) is measured
relative to the beginning of diffusive entrainment. Therefore the constant £2% is
included as the volume of the vortex bubble at the beginning of the diffusive
entrainment phase. The magnitude of 29 will be determined by the dynamics of
the preceding convective entrainment phase. In the following, £2% will be estimated
based on the earliest data points in each measurement series, although it is recognized
that each measurement did not necessarily commence immediately after the convective
entrainment phase.

The large number of parameters in (5.9) may be reduced via simplifying assumptions
regarding the dependence of the vortex ring velocity U,(¢) on its circulation (e.g.
Norbury 1973), and the dependence of the circulation on the variables £2,, D, and T,
(e.g. slug model approximation, cf. Shariff & Leonard 1992). However, since the data
for every parameter are readily available in the present case, we will not implement
those approximations at this time.

Figure 10 plots the predicted vortex bubble growth law in (5.9) for each of the
counter-flow protocols (excluding the non-entraining protocols LD4-CF0 and LD4-
CF05-6), along with the measured vortex bubble growth in each case. The shape
constant for each curve is indicated in the figure. A consistently high level of agreement
is observed in each case, with the exception of the late-time behaviour of protocol
LD2-CFE. This discrepancy is probably due to the close proximity of the ring to
the vortex generator, as indicated by its trajectory in figure 2. It appears the vortex
generator may have prevented normal deposition of ring circulation into a wake,
allowing the ring to achieve substantially enhanced entrainment at later times when
the ring circulation is normally decaying. This explanation is supported by the
observed lack of ring circulation decay for protocol LD2-CFE in figure 8. Although
this result emphasizes the role of vorticity distribution in the entrainment process,
these modified entrainment dynamics cannot be captured by the current model.

The dimensionless shape constant S is of order unity and exhibits only modest
variation across the range of experimental results. It appears that the constant scales
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with increasing entrainment enhancement, but the current data are insufficient to
draw firm conclusions.

6. Conclusions

Novel experimental techniques have been developed to probe the dynamics of iso-
lated vortex rings. The counter-flow protocols have enabled empirical study of vortex
ring evolution in a moving frame of reference, effectively eliminating many of the
common obstacles to progress in previous efforts. Quantitative velocimetry has
elucidated the structure of the rings, and a diverse set of experimental conditions
has indicated the special role of vorticity distribution and vortex ring pinch-off in
the diffusive process of ambient fluid entrainment. In a normal diffusive process
(i.e. without counter-flow enhancement), entrained fluid fractions between 30% and
40% were measured. Various counter-flow protocols demonstrated the possibility of
substantial entrainment augmentation, up to a 65% entrained fluid fraction in these
experiments.

Wake formation behind vortex rings during the entrainment process was observed
in these experiments, confirming the physical model for diffusive entrainment
suggested by Maxworthy (1972). The corresponding measurements of ring velocity
and circulation showed substantial discrepancy, however. Differences in observed ring
velocity are probably due to dissimilar boundary conditions in the vortex generator
of the previous experiments and the current study, while the overestimate in predicted
circulation decay can be attributed to the invalid assumptions of constant ring
impulse and self-similar growth in the previous analysis. The present results should
serve to caution efforts to describe vortex ring dynamics using constant-impulse or
constant-volume assumptions. Although such approximations may be reliable early
in the diffusive stage of fluid entrainment, they are inappropriate during both ring
formation and late-time ring propagation.

A model for diffusive fluid entrainment has been developed here that does not
assume a self-similar shape for vortex rings as they evolve, nor does it require a
nominally constant ring impulse. Dimensional analysis and physical arguments were
used to derive the growth rate of the vortex bubble as a function of ring circulation
and propagation speed. Predictions of the model were found to agree well with
measurements of the normal diffusive entrainment process, and it is hypothesized
that the shape constant § may scale with increasing entrainment enhancement.
Unfortunately, the discovery that the vortex rings do not evolve self-similarly limits
our ability to predict trends in the ring impulse using formulae from thin-core
approximations or steady solution families (e.g. Fraenkel 1972; Norbury 1973).

Future efforts must be directed toward achieving a better understanding of the
rapid convective entrainment process that occurs during vortex ring formation. One
can infer from the present experiments that this early phase of entrainment will
be responsible for much of the entrained fluid fraction that persists in the vortex
rings. The current experimental method was not sufficiently accurate to resolve that
convective entrainment process, but it is possible that a refinement of the technique
introduced here might be effective. Despite the absence of dynamical information
regarding the convective fluid entrainment process, the present experiments have
definitively shown a substantial contribution of ambient fluid entrainment to the
dynamics of vortex rings. As improved ideal vortex ring models are being developed,
it will be prudent to account for this phenomenon.
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These results may have important implications for pulsed jet systems that possess
a capability to manipulate the vortex ring velocity and/or vorticity distribution.
Notwithstanding the many manmade applications that may be designed to exploit
these parameters in the future, various animals may have already achieved success in
this endeavour. For example, it is known that many pulsed-jet animal swimmers that
are dependent on self-generated vortical flows for feeding are narrowly tuned for a
specific swimming speed regime. Since the relative speed of vortex rings generated
during swimming is coupled to the prevalent swimming speed regime of the animal,
it will be interesting to further examine the relationship between swimming regime
and the effectiveness of entrainment mechanisms in these animals.
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suggestions. This work has been conducted with the support of National Science
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